'dış teğet çember' ile ilgili yazılar:

Fagnano Teoremi: En küçük çevreli üçgen

DEF üçgeninin çevresinin en küçük olması için ortik üçgeni olması gerekir.

Köşeleri ABC üçgeni üzerinde bulunan üçgenlerden çevresi en küçük olan üçgen ortik üçgenidir.

Köşeleri herhangi bir $ABC$ üçgeninin kenarları üzerinde bulunan $DEF$ üçgeninin çevresinin en küçük olması için, $DEF$ üçgeninin $ABC$ üçgeninin ortik üçgeni olması gerektiğini gösteriniz.

(daha&helliip;)

Ortik Üçgeni

Dar veya geniş açılı bir üçgenin yükseklik ayaklarıyla (DEF) kurulan üçgene ortik üçgeni denir.

Bir üçgenin yüksekliklerinin (uzantılarının), kenarları (uzantılarını) kestiği noktaları köşe kabul eden üçgene ‘ortik üçgeni’ denir. Şekildeki DEF üçgeni ortik üçgenidir.

$i.\quad$Dar açılı bir $ABC$ üçgeninin yüksekliklerinin kesiştiği nokta (diklik merkezi) $K$ ve yükseklik ayakları $D$, $E$, $F$ olduğuna göre; $K$ noktasının, $DEF$ üçgeninin (ortik üçgeni) iç teğet çemberinin merkezi olduğunu gösteriniz.

$ii.\quad$Geniş açılı bir üçgenin diklik merkezinin, bu üçgenin ortik üçgeninin dış teğet çemberinin merkezi olduğunu gösteriniz.

(daha&helliip;)

Dış açıortay teoremleri ve dış teğet çember

Bir köşeden çizilen iç açıortayla diğer köşelerinden birinden çizilen dış açıortayın kesiştiği nokta P ise CP de dış açıortaydır.

$ABC$ üçgeninde $AD$ iç açıortay ve $BP$ dış açıortay olmak üzere;

$i.\quad$ Herhangi bir üçgende, bir köşeden çizilen iç açıortay ile diğer iki köşeden çizilen iki dış açıortayın bir noktada kesiştiğini (noktadaş) gösteriniz.

$ii.\quad \Large \frac{\left | BD \right |}{\left | DP \right |} = \frac{\left | BA \right |}{\left | AP \right |}$

$iii.\quad \left | BP \right |^{2} = \left | AP \right |\left | DP \right | – \left | BD \right |\left | BA \right |$

olduğunu gösteriniz.

(daha&helliip;)